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Abstract. Vegetation fires are a major driver of ecosystem

dynamics and greenhouse gas emissions. Anticipating po-

tential changes in fire activity and their impacts relies first

on a realistic model of fire activity (e.g., fire incidence and

interannual variability) and second on a model accounting

for fire impacts (e.g., mortality and emissions). In this pa-

per, we focus on our understanding of fire activity and de-

scribe a new fire model, HESFIRE (Human–Earth System

FIRE), which integrates the influence of weather, vegetation

characteristics, and human activities on fires in a stand-alone

framework. It was developed with a particular emphasis on

allowing fires to spread over consecutive days given their ma-

jor contribution to burned areas in many ecosystems. A sub-

set of the model parameters was calibrated through an op-

timization procedure using observation data to enhance our

knowledge of regional drivers of fire activity and improve

the performance of the model on a global scale. Modeled fire

activity showed reasonable agreement with observations of

burned area, fire seasonality, and interannual variability in

many regions, including for spatial and temporal domains not

included in the optimization procedure. Significant discrep-

ancies are investigated, most notably regarding fires in boreal

regions and in xeric ecosystems and also fire size distribu-

tion. The sensitivity of fire activity to model parameters is

analyzed to explore the dominance of specific drivers across

regions and ecosystems. The characteristics of HESFIRE and

the outcome of its evaluation provide insights into the influ-

ence of anthropogenic activities and weather, and their inter-

actions, on fire activity.

1 Introduction

The human population has more than doubled in the past 50

years, expanding the scale and diversity of changes in the

Earth system due to anthropogenic activity. The build-up of

greenhouse gases in the atmosphere and the degradation and

conversion of natural lands have major consequences for fu-

ture climate, natural ecosystems, and human societies (Parry,

2007; Stocker et al., 2013). Interactions between human and

natural systems are complex, yet observational data, field ex-

periments, and various types of models continue to elucidate

key linkages between climate variability, ecosystem func-

tion, and anthropogenic activities. This knowledge is essen-

tial for anticipating potential changes under future conditions

and to design adaptation or mitigation strategies that promote

the sustainability of the coupled human–Earth system.

One of these interactive processes linking human activi-

ties and natural ecosystems is fire (Bowman et al., 2009).

Humans exert considerable influence over global fire activity

(Le Page et al., 2010a); fire-driving deforestation accounts

for an estimated 20 % of the increase in atmospheric CO2

from human activities since preindustrial times (Bowman et

al., 2011; van der Werf et al., 2010). Fire activity depends on

a range of drivers covering three major components of the
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human–Earth system: the atmosphere (e.g., weather condi-

tions), the terrestrial biosphere (e.g., fuel loads), and anthro-

pogenic activities (e.g., land-use fires and fire suppression).

The interaction among these drivers determines global fire

activity, as illustrated in 1997–1998 when a strong El Niño

occurrence led to extreme fire events around the world (Le

Page et al., 2008), including unprecedented fires in peatlands

and forests of Indonesia where human-caused fires emitted

an estimated 13 to 40 % of the world’s annual fossil fuel

emissions (Page et al., 2002).

Modeling fire activity under future climate, policy, and

land use scenarios requires a framework with a broad range

of variables (Pechony and Shindell, 2009) and a good under-

standing of the influence of these variables for model param-

eterization. Several global fire models have been developed

in recent decades, each with a different focus (e.g., Arora

and Boer, 2005; Li et al., 2013; Pfeiffer et al., 2013; Prentice

et al., 2011; Thonicke et al., 2001, 2010). Among these ex-

amples, SPITFIRE (Thonicke et al., 2010) is a process-based

fire model coupled to a vegetation model explicitly represent-

ing many physical properties of fire behavior, providing great

capabilities regarding fire spread, fire intensity, and fire im-

pacts (damage, mortality, emissions). The model developed

by Li et al. (2013) has a particular emphasis on depicting

anthropogenic ignitions, with good performances regarding

global patterns of burned area.

One key prospect to build upon existing work, as men-

tioned by Thonicke et al. (2010), is to develop the capability

for modeling fire spread over consecutive days. This capa-

bility has been reported in one global fire model focusing on

pre-industrial era fires (Pfeiffer et al., 2013). In many ecosys-

tems, multi-day fires are a major driver of the overall fire ac-

tivity. In boreal regions, dry spells and heat waves in the days

and weeks following ignition enable the growth of large fires

(Abatzoglou and Kolden, 2011), and although those burning

over 200 ha represent a minor fraction of all fires, they typ-

ically account for 90+% of the total area burned (Stocks et

al., 2002). In tropical forests, large-scale climate anomalies

allow individual fires to spread over several weeks, includ-

ing areas further away from the forest edge where ignitions

typically occur (Morton et al., 2013). Similar findings have

been reported for temperate regions, including in Mediter-

ranean ecosystems (Pereira et al., 2005; Westerling et al.,

2004). Modeling fire–climate interactions therefore requires

careful attention to the duration of fire weather events.

Another opportunity for fire modeling research is model

parameterization and their evaluation. Many early models

had to extrapolate findings from local studies or to simplify

key drivers of fire activity when information of some com-

ponents was unavailable (e.g., ignitions independent of an-

thropogenic activities). Recently, model calibration has been

applied to one (Thonicke et al., 2010) or a few (Li et al.,

2013) parameters. Expanding this approach to additional pa-

rameters could yield relevant insights on fire drivers. Subse-

quent model evaluation is essential to assess our confidence

in fire projections, especially regarding fire activity – the

global spatiotemporal patterns of which are relatively well

characterized by observation data (Mouillot et al., 2014) –

because depicting patterns of fire activity and their sensitiv-

ity to fire drivers is a pre-requisite to project realistic fire im-

pacts. Evaluating fire models is challenging when they are

embedded within vegetation models, however, because veg-

etation distribution strongly affects fire dynamics (Scott and

Burgan, 2005), and if modeled inaccurately, this may lead to

unrealistic fire projections for reasons unrelated to the fire

parameterization.

This paper describes the development of the HESFIRE

model (Human–Earth System FIRE), aimed at improving our

understanding of current fire activity and our capacity to an-

ticipate its evolution with future environmental and societal

changes. HESFIRE is first developed as a stand-alone model,

i.e., not integrated within a dynamic vegetation model. The

major emphasis of this research is to outline the model struc-

ture and apply an optimization procedure to explore some of

the research opportunities mentioned above. Our analysis has

three main objectives: (1) explicit representation of fire igni-

tion, spread, and termination, without exogenous constrain

on fire duration; (2) consideration of atmospheric, terrestrial,

and anthropogenic drivers in order to represent synergistic

effects among weather, vegetation, and human activity-key

steps towards the implementation of the fire model within

human- and Earth-system models; and (3) model optimiza-

tion and evaluation to improve our understanding of con-

straints on global fire activity and to quantify uncertainties

of future fire activity projections.

2 Methods

2.1 Model overview

The structure of HESFIRE was designed to satisfy objectives

1 and 2 (representation of ignition, spread, and termination,

and ease of integration to vegetation and integrated assess-

ment models), and some of its parameters were optimized

to estimate the quantitative role of poorly understood drivers

and to maximize the agreement between modeled and ob-

served fire regimes (objective 3). The model focuses on fires

in natural ecosystems; deforestation and agricultural fires are

dependent on very different dynamics (controlled spread,

pile burning) and thus only considered as a source of igni-

tion for escaped fires. The model is organized in three parts,

with specific drivers for fire ignition, spread, and termination

(Fig. 1):

– Fire ignition. Natural ignitions are a function of cloud-

to-ground lightning strikes and the probability of igni-

tion per strike. Human ignitions reflect agricultural and

ecosystem management as a function of land use den-

sity and national gross domestic product (GDP).
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Figure 1. HESFIRE diagram.

– Fire spread. Fire spread rate is a function of weather

conditions (relative humidity, temperature, wind speed),

soil moisture, and fuel structure categories (forest,

shrub, grass).

– Fire termination. Four factors control the termination

of fires: weather conditions, fuel availability, landscape

fragmentation, and fire suppression efforts (a function

of land use, GDP, and fire suppressibility).

To account for the diurnal variability in fire spread and

termination (see Introduction), every fire is tracked individ-

ually with a 12 h time step. The analyses presented in this

paper were conducted with model runs at a resolution of

1◦. HESFIRE is coded in Python 2.7 and is available at

https://github.com/HESFIRE/HESFIRE1. The optimization

procedure is included in the code.

2.2 Model description

The full list of parameters is described in Table 1. The fol-

lowing sections detail the fire ignition, spread, and termina-

tion modules.

2.2.1 Fire ignitions

Fires may occur due to natural ignitions (NATign) and human

ignitions (ANTHROPign):

Nfires = NATign + ANTHROPign. (1)

To introduce some of the stochasticity associated with fires,

Nfires represents the expected realization of a Bernoulli trial

(n= 1000), and the final number of ignitions is computed

following the actual trial.

Natural ignitions

Lightning strikes are the most frequent source of natural ig-

nitions. Lightning ignitions are highly stochastic because of

the localized occurrence of convective storms, variability in

the frequency of cloud-to-ground lightning, and coincident

rainfall which can terminate ignited fires before substantial

spread occurs (see review in Podur et al., 2003). In HES-

FIRE, natural ignitions are the product of cloud-to-ground

lightning strikes, the probability of ignition from a lightning

strike, and the fractional cover of flammable vegetation in a

given grid cell:

NATign = CGflashes ·CGfirep · (1− Fragn), (2)

where CGflashes is the number of cloud-to-ground lightning

strikes, CGignp is the lightning ignition probability deter-

mined through the optimization procedure (see Sect. 2.3),

and Fragn (fragmentation) is the fraction of the grid cell that

cannot sustain a fire. Areas contributing to fragmentation in-

clude croplands, urban areas, water bodies, deserts, and areas

burned within the last 8 months (the last definition included

to avoid repeated burns within the same fire season).

Anthropogenic ignitions

Humans are the dominant source of fire ignition in most tem-

perate and tropical ecosystems. Ignitions from human activi-

ties include fires for agriculture and ecosystem management,

deforestation for agricultural expansion, accidental fires, and

arson. Fire usage varies across countries, climate zones, and

land use practices (Korontzi et al., 2006; Le Page et al.,

2010a), and this diversity of human activity cannot be fully

captured with current knowledge and data. However, wealth

is an important driver of fire use in agricultural settings, since

fire is typically the least costly tool to clear natural vege-

tation, control pests, or increase soil fertility (Laris, 2002;

www.biogeosciences.net/12/887/2015/ Biogeosciences, 12, 887–903, 2015
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Table 1. Model parameters.

Parameter Description Value and unit Source [optimization range],

if applicable

Ignitions

CGignp Cloud-to-Ground ignition probability. Aver-

age probability of ignition from a cloud-to-

ground lightning strike on natural vegetation.

6.8 % Optimization

[2.8–16.6]

ANTHROPign Land Use ignitions. Original number of hu-

man ignitions per km2 of land use per 24 h,

prior to applying density-decreasing func-

tion (see LUexp).

2.3× 10−3 km−1 Optimization

[1.1–6]× 10−3

LUexp Land Use exponent. Shape parameter: con-

trols the decreasing contribution of incre-

mental land use areas to human ignitions

14.9 Optimization

[14.7–19.8]

GDPa
exp GDP exponent. Shape parameter: impact of

GDP on ignitions through land use practices.

1.28 Optimization

[0.83–3.02]

LUthresh Land Use threshold. Fractional land use be-

yond which additional land use does not con-

tribute any more ignitions.

0.1 Successive trials for reason-

able exponent valueb

GDPrange GDP range. Range of regional GDP control-

ling fire ignitions through land use practices.

[USD 0–60 000]

cap−1 yr−1
Observed rangec

Spread

BAfrag Burned Area fragmentation. Delay before

burned areas can burn again (given sufficient

precipitation for fuel accumulation), mean-

while contributing to fragmentation.

8 months Model performance trialsd

Maxforestrate Maximum forest fire spread rate. 0.28 m s−1 (Scott and Burgan, 2005)

Maxshrubrate Maximum shrublands fire spread rate. 1.12 m s−1 (Scott and Burgan, 2005)

Maxgrassrate Maximum grasslands fire spread rate. 2.79 m s−1 (Scott and Burgan, 2005)

RHrange RH range. Range of relative humidity con-

trolling fire spread.

[30–80] % (Li et al., 2012)

Scatterplote

Model performance trials

RHexp RH exponent. Shape parameter: impact of

relative humidity on fire spread rate.

1.18 Optimization

[0.52–1.31]

SWrange Soil Water range. Range of volumetric soil

moisture controlling fire spread.

[20–35] % Scatterplot

Model performance trials

SWexp Soil Water exponent. Shape parameter: im-

pact of volumetric soil moisture on fire

spread rate.

1.21 Optimization

[0.30–1.44]

Trange Temperature range. Range of temperature

controlling fire spread.

[0–30] ◦C Scatterplot

Model performance trials

Texp Temperature exponent. Shape parameter:

impact of air temperature on fire spread rate.

1.78 Optimization

[0.8–3.8]
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Table 1. Continued.

Parameter Description Value and unit Source [optimization range],

if applicable

Termination

Fuelrange Fuel range. Range of precipitation con-

trolling termination probability through fuel

build-up.

[0.5–3] mm day−1 Scatterplot

Model performance trials

Fuelspan Fuel accumulation timespan. Timespan of

average precipitation controlling fuel build-

up.

12 months (Greenville et al., 2009; van

der Werf et al., 2008; Van

Wilgen et al., 2004)

Model performance trials

Fueldelay Fuel accumulation delay. Delay from actual

precipitation to fuel build-up.

3 months Model performance trials

Fuelexp Fuel exponent. Shape parameter: impact of

precipitation over −15 to −3 months on fire

termination probability, a proxy fuel build-

up.

1.72 Optimization

[1.62–3.65]

Fragrange Fragmentation range. Range of fractional

landscape fragmentation controlling termi-

nation probability.

[0–1] Observed range

Fragexp Fragmentation exponent. Shape parameter:

impact of landscape fragmentation on fire

termination probability.

1.81 Optimization

[0.94–2.48]

LUrange Land Use range. Range of fractional

land use controlling termination probability

through suppression efforts.

[0–0.1] Successive trials for reason-

able exponent value

LUSUPexp Land Use SUPpression exponent. Shape pa-

rameter: impact of land use on fire termina-

tion probability through suppression efforts,

in interaction with GDP (below).

4.08 Optimization

[1.62–7.18]

GDPrange GDP range. Range of regional GDP control-

ling fire suppression effort.

[USD 0–60 000]

cap−1 yr−1
Observed range

GDPa
exp GDP exponent. Shape parameter: impact of

GDP on suppression effort through land use

practices.

1.28 Optimization

[0.83–3.02]

a: In order to limit the number of parameters to optimize for the first version of the fire model, GDPexp is attributed the same optimized value when

applied to either fire ignitions or fire termination.
b: Successive trials for reasonable exponent value. This was applied to the range of land use fraction for ignition and suppression (see Sect. 2.2.1.2).
c: Observed range. The range covers all or most of the values across the world. For GDPrange, a few grid cells are beyond the USD 60 000 per capita

upper limit (in Qatar).
d: Model performance trials. These parameters were not determined using the full optimization procedure, but we tried a limited number of values (e.g.,

5, 8, and 12 months for BAfrag) and selected the one leading to the best fit.
e: Scatterplot. We used scatterplot to determine the range of influence of some drivers, namely RH, soil moisture, temperature and the precipitation fuel

proxy. An example is given in Fig. S2 in the Supplement.

Thrupp et al., 1997). Thus we represent anthropogenic igni-

tions as a function of land use intensity and national GDP,

where higher fractional land use and lower GDP increase an-

thropogenic fire ignitions. Similar to the approach used in

the SPITFIRE model (Thonicke et al., 2010), we assume that

initial settlements bring more ignitions relative to additional

ones:

ANTHROPign = (1−GDPn)
GDPexp ·LUign ·

LU=LUtot∫
LU=0

(3)

(
(LUthresh · cell_area)−min[LU, (LUthresh · cell_area)]

(LUthresh · cell_area)

)LUexp

,

where GDPn is the normalized gross domestic product per

capita (from USD 0 to 60 000), GDPexp the associated shape

parameter, LUign the initial number of ignitions per km2 of

land use, LUtot the land use area (km2) in the grid cell con-

sidered, computed as the sum of crops and urban areas (see

Sect. 2.4.3.), cell_area the area of the grid cell (km2, a func-

tion of latitude), LUthresh the fractional land use value beyond

which additional land use does not contribute any more igni-

tions, and LUexp the shape parameter controlling the decrease

in the amount of additional ignitions with incremental land

www.biogeosciences.net/12/887/2015/ Biogeosciences, 12, 887–903, 2015
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use. LUthresh was initially set to 1, but the exponent parame-

ter LUexp was systematically optimized at very high values.

LUthresh was thus progressively decreased to a final value of

0.1, pointing to a rapid saturation of human ignitions with

land use. LUign and GDPexp were also determined through

the optimization procedure. Equation (3) conveys the follow-

ing fire-driving mechanisms:

– Anthropogenic ignitions increase with human occupa-

tion of the landscape, but at a lower rate with additional

land use, and saturate once 10 % of the landscape is oc-

cupied (Fig. S1 in the Supplement).

– Fire use for land use management depends on the re-

gional GDP, with maximum fire use in the poorest re-

gions, and virtually no fire use at all for regions beyond

USD 60 000 per capita. Only one country (Qatar) has a

GDP beyond this range in the data. In the future, more

countries are expected to have a GDP over USD 60 000

per capita, and thus would not have any human ignitions

(see discussion).

2.2.2 Fire spread

The rate of fire spread Frate is modeled for three broad vege-

tation types – forest, shrub, and grass – and varies as a func-

tion of their respective maximum fire spread rate, of relative

humidity, soil moisture, temperature, wind speed, and fuel

structure:

Frate = Maxrate ·

(
1−RH

RHexp
n

)
·

(
1−SW

SWexp
n

)
·

(
1− T

Texp
n

)
·G(W) (4)

RHn, SWn and Tn representing the normalized RH, SW and

T , i.e.:

RHn =max

[
min

[
RH−RHrange[1]

RHrange[2]−RHrange[1]

1

]
,0

]
(5)

where Maxrate is the maximum fire spread rate, constrained

by observations (Scott and Burgan, 2005): 0.28 m s−1 in

forests, 1.12 m s−1 in shrubs, and 2.79 m s−1 in grasses. RHn

is the normalized relative humidity, from RHrange[1] = 30 %

to RHrange[2] = 80 % (adapted from Li et al., 2012). SWn and

Tn are the normalized 0–10 cm layer soil moisture (20–35 %,

used as a proxy for fuel moisture) and temperature (0–30 ◦C),

as determined by simple data analysis and parameter value

trials (see Table 1). RHexp, SWexp, and Texp are the opti-

mized shape parameters controlling the fire-driving relation-

ship. Fires are modeled with an elliptical shape, with higher

winds leading to higher fire spread rate and to more elongated

fires. The influence of wind, G(W), is computed following

the method adapted from Arora and Boer (2005) described in

Li et al. (2012), as a function of the length-to-breadth (LB)

and head-to-back (HB) ratios of the elliptical fire, both of

which depend on wind speed (w).

LB = 1+ 10 · (1− e−0.06·ω) (6)

HB = LB +
LB + (LB2

− 1)0.5

LB − (LB2− 1)0.5
(7)

G(W)= 2 ·
LB

(1+ 1/ HB)
· 0.0455 (8)

Within a grid cell, fires are assumed to spread with equal

probability to each of the three vegetation types. Their re-

spective burned area therefore reflects their specific fire

spread rates and fraction within the grid cell. Given the large

size of the model grid cells (1◦× 1◦), fire spread to neighbor-

ing grid cells is not considered.

2.2.3 Termination

Individual, multi-day fires are modeled from ignition to ter-

mination. Fire termination may occur in four ways: weather

conditions are no longer favorable to fire spread, the fire

is stopped by landscape fragmentation, by lack of fuel, or

suppressed by fire-fighting activities. Each termination path-

way contributes to the overall probability of termination; fire

termination is then determined by the same Bernoulli trial

stochastic approach applied to fire ignitions. Fire termination

is computed every 12 h and may occur before any spread (i.e.,

right after ignition).

Nfirest+1 = Nfirest ·

{
(1− Fueltermp) · (1− Fragtermp)·

(1− Supptermp) · (1− Weathertermp)

}
, (9)

where Nfires is the number of active fires, and Fueltermp,

Fragtermp, Supptermp, and Weathertermp are the probability of

termination due to each factor.

Weather-related termination occurs when fire spread rate

decreases to zero, that is when RH is 80 % or above, soil

moisture is 35 % or above, or when the temperature drops

below freezing (see Sect. 2.2.2).

If RH ≥ RHmax or SW≥ SWmaxorT ≤ Tmin

Weathertermp = 1

Else Weathertermp = 0 (10)

Fuel load and its impact on termination is a function of the

cumulative precipitation prior to the current time step, as an

indicator of water limitation on fuel build-up in arid areas:

Fueltermp = 1−Precip
Fuelexp
n , (11)

where Precipn is the average precipitation from −15 to

−3 months, normalized from 0.5 mm day−1 (Precipn = 1) to

3 mm day−1 (Precipn = 0). The averaging window was deter-

mined based on values from the literature (Greenville et al.,

2009; van der Werf et al., 2008; Van Wilgen et al., 2004),

Biogeosciences, 12, 887–903, 2015 www.biogeosciences.net/12/887/2015/
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which consider a 12-month to 24-month window, and ad-

justed through model performance assessment with differ-

ent values. The normalization range was determined based

on simple data analysis and parameter value trials (see Ta-

ble 1 and Fig. S2). Fuelexp is the shape parameter, determined

through the optimization procedure.

The influence of landscape fragmentation is computed as

Fragtermp = Frag
Fragexp
n , (12)

where Fragn is the fraction of the grid cell that cannot sus-

tain a fire. Areas that cannot sustain natural vegetation fires

include croplands, urban areas, water bodies, and deserts. Be-

cause HESFIRE does not explicitly represent fuel loads, ar-

eas that burned up to 8 months prior to the day being consid-

ered also contribute to fragmentation, to avoid repeated burns

within the same fire season, but allowing fires in the follow-

ing fire season if enough precipitation occurs (e.g., in sub-

Saharan Africa). Fragexp is the shape parameter, determined

through the optimization procedure. Note that this is a simple

fragmentation index; more advanced approaches can include

aspects of connectivity, edge density, and more (Jaeger, 2000;

Schumaker, 1996).

Fire suppression is modeled as a function of land use (hu-

man presence), GDP, and fire suppressibility. This approach

assumes that (1) fire suppression activities are limited in re-

gions with low GDP, and in remote areas with little land use

regardless of GDP (e.g., boreal fires in Canada and Alaska,

bush fires in northern Australia); and (2) the more fire prone

the conditions (weather, fuel), the less effective fire suppres-

sion efforts are. These assumptions are embodied in the fol-

lowing equation:

Supptermp =

(
1−

(
1− LU

LUSUPexp
n

)
·

(
1− GDP

GDPexp
n

))
· (1−Fsuppressibility), (13)

where LUn is the fraction of the grid cell with land use, nor-

malized from 0 (LUn = 0) to 0.1 (LUn = 1), LUSUPexp is a

shape parameter controlling the increase in suppression ef-

forts with land use density, GDPn is the normalized GDP

(from USD 0 to 60 000 per capita), GDPexp is the shape

parameter, and Fsuppressibility is a proxy for the influence

of weather and fuel on easiness of suppression. LUSUPexp

and GDPexp are determined through the optimization pro-

cedure. Note that GDPexp has the same value as in Eq. (3)

for human ignitions. GDP has a negative relationship to fires

through both ignitions and suppression, leading to an under-

constrained optimization if maintaining two separate param-

eters. Fsuppressibility is dependent on weather conditions and

fuel, assuming lower suppressibility with windier, drier, and

hotter conditions and with higher fuel load:

Fsuppressibility =

(
1− RH

RHexp
n

)
·

(
1− SW

SWexp
n

)
·

(
1− T

Texp
n

)
·G(W) · Precip

FUELexp
n . (14)

Previous studies on the influence of climate conditions on

fire intensity and suppressibility are limited and have mostly

focused on process-based modeling (Rothermel and Forest,

1972; Thonicke et al., 2010). Our approach is thus a simple

combination of the fuel and weather variables that have an

impact on fire suppression until more research is done on the

subject.

2.3 Model optimization

The nine optimized parameters (Table 1) are classified into

two categories:

a. Non-shape parameters (two out of nine) account for

quantitative impacts of fire drivers: the default number

of human ignitions per land use area (LUign) and the

probability that lightning strikes on vegetated areas ig-

nite a fire (CGignp).

b. Shape parameters (seven out of nine) control the shape

of the relationship between a given driver and fire.

For example, relative humidity is assumed to limit fire

spread between 30 and 80 %, but the linear or nonlin-

ear relationship with relative humidity between 30 and

80 % and fire spread is unclear. To optimize this type of

parameter, the variable was first normalized between 0

(RHrange[1] = 30 %) and 1 (RHrange[2] = 80 %). Then the

actual impact of RH on fire spread rates was computed

with a shape parameter, RHexp (Eq. 4).

These shape parameters can convey a wide range of poten-

tial driving relationships (Fig. 2). The exponential function

was selected to balance gains in process understanding and

costs associated with computational efforts. We acknowledge

that complex fire-driving relationships (e.g., sigmoid) can-

not be accounted for here. Exploring such aspects would re-

quire two or more parameters per driver, which would lead to

computational speed and convergence problems during op-

timization. The objective was to infer general conclusions

on otherwise little-understood fire drivers, for which single-

parameter functions were well adapted.

We used a Markov chain Monte Carlo approach based on

the Metropolis algorithm (Metropolis et al., 1953) to obtain

best-fit parameter values. The algorithm generates trial sets

of parameters pseudo-randomly, and compares model out-

puts with observation data. Each trial set is either accepted or

rejected, and the history of acceptance and rejection guides

the generation of subsequent trial sets. Acceptance occurs if a

trial set leads to a better fit than the current parameterization.

To limit the risk of convergence to local optimums, accep-

tance may also occur if the trial set does not have a better
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Figure 2. Control of shape parameters (exponents, here RHexp) on

fire-driving relationships. The exponent can take any value (from

0.033 to 30) as determined by the optimization procedure, thus cov-

ering a wide space of potential fire-driving influence.

fit, with decreasing likelihood as the difference with the best

fit increases. Upon acceptance (rejection), the range of possi-

ble parameter values is increased (decreased) before the next

trial set is generated. The algorithm typically explored hun-

dreds to over a thousand sets of trial parameter values before

converging to a best fit (Fig. 3).

The optimization metric was defined to minimize classi-

fication error across seven classes of annual burned fraction

(interval boundaries: 0, 1, 5, 10, 20, 35, 50+% of the grid

cell), and to maximize the correlation with observed inter-

annual variability. Within each class, grid cells are attributed

continuous values based on linear interpolation: a grid cell

with 3 % burned fraction is given the value of 2.5, being

in the middle of the second interval boundaries. This clas-

sification approach aims at capturing important changes that

would have little weight on the optimization if using direct

burned fraction value. In the context of ecosystem sustain-

ability and fire impacts in general, a difference between 3

and 4 % in fire-sensitive tropical forests is more relevant to

capture than between 33 and 34 % in fire-adapted grasslands

of northern Australia.

Optindex = (15)

∑n
gridcell =1(MODfclass − OBSclass)

2
+
∑n

gridcell =1(1− IAVcorrecoef(Mod, OBS))

n

where MODfclass and OBSclass are the modeled and observed

fire classification, and IAVcorrecoef the correlation coefficients

for both time series, for each grid cell.

The optimization was performed using modeled and ob-

served burned area over 5 years (2002–2007). Fewer than

2 % of all land grid cells were used for the optimization step;

these were selected manually to represent the broad spectrum

of fire regimes and the range of environmental conditions

around the world (e.g., biomes, land use density, fuel gradi-

ent in semi-arid regions, GDP, see Figs. S3 and S4 in the Sup-

plement). No grid cells were selected from South America,

 

Figure 3. HESFIRE’s performance through the optimization pro-

cedure iterations. The solid line represents the optimization of the

final model. The dashed lines represent the optimization of three of

the alternative runs, using different sets of grid cells and years to

evaluate the robustness of the parameters.

in order to test the model’s ability to reproduce fire patterns

under combinations of drivers it might not have encountered

during optimization (e.g., Brazil’s GDP is higher than other

tropical countries in Africa and Southeast Asia), and under

specific conditions that cannot be fully depicted by the model

drivers (e.g., fire practices). To evaluate the robustness of the

algorithm convergence, we performed 20 optimization runs,

each using different grid cells and years.

2.4 Model evaluation

We evaluated HESFIRE using satellite-derived estimates of

(1) burned area and aggregate characteristics of regional fire

activity over 1997–2010 (fire incidence, seasonality, interan-

nual variability); and (2) the regional distribution of fire size

for the year 2005.

Finally, we performed a sensitivity analysis to evaluate

the influence of each model parameter on the averaged an-

nual burned area within the model. For each parameter, the

model was run twice, with the parameter changed to+50 and

−50 % of its original value while everything else was kept

the same. For each grid cell, we then extracted the parameter

that generated the largest change in burned area. This ap-

proach has been applied in numerous modeling studies (e.g.,

Potter et al., 2001; White et al., 2000; Zaehle and Friend,

2010); see Saltelli et al. (2000) for alternatives methods. Re-

sults of the sensitivity analysis were grouped into four classes

to map the spatial distribution of parameter sensitivity: (1)

weather (lightning strikes, RH, soil moisture, and tempera-

ture parameters); (2) fuel (precipitation proxy); (3) anthro-

pogenic (ignitions and suppression parameters); (4) fragmen-

tation (landscape fragmentation parameter).
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2.5 Data

2.5.1 Weather

We combined two data sources to estimate the spatial and

temporal variability in natural ignitions from lightning. The

timing and location of cloud-to-ground lightning strikes

is based on convective precipitation (Allen and Pickering,

2002) using sub-daily convective precipitation data from

NCEP (see below). We then corrected biases in the spa-

tial distribution of lightning strikes identified by the au-

thors of this method with the observed Lightning Imaging

Sensor/Optical Transient Detector (LIS/OTD) climatology

(Christian et al., 2003), converted to cloud-to-ground light-

ning strikes following Prentice and Mackerras (1977).

Sub-daily relative humidity, soil moisture, temperature,

wind speed, and convective precipitation data were obtained

from the NCEP-DOE Reanalysis II project (Kanamitsu et

al., 2002). For fuel limitation, we used monthly precipita-

tion data from the Global Precipitation Climatology Project

(GPCP, Adler et al., 2003). All data were interpolated lin-

early from their original resolution (2.5◦ for NCEP) to the

model 1◦ resolution, and averaged from 6-hourly to 12-

hourly.

2.5.2 Land cover

We used the GlobCover version 2.3 land cover map (Bon-

temps et al., 2011) to estimate the distribution of natural

ecosystems and anthropogenic land use at 1◦ resolution.

GlobCover data were re-gridded from the original 300 m res-

olution to 1◦ and reclassified from 22 land cover classes to

the five classes used in the model (forests, shrublands, grass-

lands, croplands/urban, bare areas/water).

2.5.3 Land use and GDP

Land use area was computed as the sum of crops and ur-

ban lands in the GlobCover data. National GDP was inferred

from the 2009 World Factbook (CIA, 2009).

2.5.4 Fire activity

The Global Fire Emission Database (GFED version 3, van

der Werf et al., 2010) was used in the optimization proce-

dure as well as to evaluate the representation of fire inci-

dence, seasonality, and interannual variability in HESFIRE.

The regional distribution of fire was evaluated with observa-

tions from the MODIS MCD45 burned area product (Roy et

al., 2008). Note that both of these products feature substan-

tial uncertainties (Giglio et al., 2010, 2013; Roy et al., 2008).

In the case of burned area from GFED, we consider uncer-

tainties to be roughly 25–50 % based on these papers and on

a comparison of GFED versions 2, 3, and 4.

 

 

Figure 4. Parameter variability across the set of optimization runs

with different grid cells and years. Among the 20 runs, 16 reached

a relatively consistent parameterization (see text). These are rep-

resented as colored markers and their range is shown by the black

lines. For the other four runs, parameters are shown as grey markers.

The vertical dashed lines indicate the lower and upper (symmetric)

thresholds of parameters range which were used to separate these

four runs.

3 Results

3.1 Optimization

The parameters inferred by the optimization procedure are

consistent with our current understanding of fire drivers, and

provide a quantitative estimate on otherwise poorly con-

strained relationships. Their value, variability across the 20

optimization runs and implications for fire ignition, spread,

and termination are presented in Figs. 4 and 5. In 16 out of

the 20 optimization runs performed, the final set of param-

eters was relatively similar to the final model, and changes

in parameter values were mostly compensative of each other,

especially for correlated fire drivers (e.g., relative humidity

and soil moisture). In four cases, the optimization procedure

reached an alternative configuration, with one or several pa-

rameters differing from the final parameterization by a factor

greater than five, and were discarded as unsuccessful param-

eterizations, most likely stuck at local optimums. Hereafter,

we will refer to the remaining 16 models to consider param-

eter uncertainty, represented by the black lines in Fig. 4 and

shaded areas in Fig. 5.

For fire ignitions, the probability that lightning strikes on

natural vegetation ignite a fire under fire prone conditions is

optimized at 6.8 % (uncertainty range [2.8 to 16.6 %]), com-

parable to the value inferred from the literature used in SPIT-

FIRE (4 %, Thonicke et al., 2010). We emphasize, however,

that this metric is a general probability which does not de-

pict the complex relationship between cloud-to-ground light-

ning strikes and fire ignitions (Podur et al., 2003). Regarding

anthropogenic sources, the optimization procedure suggests

that the number of human ignitions saturates at a low land-

use fraction, with any additional land use beyond 2–3 % of

the grid cell area having no contribution to ignitions (Fig. 5a).

The final number of anthropogenic ignitions further depends

on GDP per capita, with a nearly linear relationship (Fig. 5b).
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Figure 5. Optimized model parameters and their influence on fire

ecology. For each plot, the parameter(s) contributing to the shape

of the function are indicated, and the thick black line represents

the parameter influence in the final model. The dotted black lines

represent the 16 optimization runs that reached a similar parame-

terization to the final model, the shaded area showing the range of

their influence. The dotted grey lines represent the four optimization

runs which reached a parameterization substantially different from

the final model (see text).

Regarding fire spread, exponents depicting the role of

RH and soil moisture indicate relatively linear relationships,

with significant uncertainty (RHexp= 1.18 [0.52 to 1.29];

SWexp= 1.21 [0.3 to 1.44]) (Fig. 5d, e). The relationship

with temperature is slightly nonlinear (Texp= 1.78 [0.80 to

3.30]), indicating a lower impact of temperature changes to-

wards the higher range of the influence interval ([0–30 ◦C]).

Optimizing the model without the influence of temperature

produced relatively similar performances, except in high-

latitude regions where temperature constraints encompass

limits on fire spread (e.g., snow cover).

For fire termination, the anthropogenic influence indicated

a rapid saturation of suppression efforts with land use density

(LUSUPexp= 4.08 [1.62 to 7.18]) and maximum suppres-

sion at 0.1 fractional land use (Fig. 5a). The influence of GDP

was approximately linear (GDPexp= 1.28 [0.97 to 2.24]),

while the influence of landscape fragmentation was slightly

nonlinear (FRAGexp= 1.41 [0.83 to 3.02]). The cumulative

precipitation proxy for fuel load also indicated a slightly

nonlinear relationship (FUELexp= 1.72 [1.62 to 3.65]). Cli-

matic factors only operate through condition thresholds (e.g.,

relative humidity over 80 %) and were thus not optimized.

3.2 Global 1997–2010 run and comparison to

observation-derived data

The modeled and observed average annual burned fractions

across the world are illustrated in Fig. 6. In South Amer-

ica, which was not part of the optimization phase, HESFIRE

depicts most spatial patterns as well as the actual incidence
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Figure 5. Continued.

of fires, including increased fire activity associated with the

expansion of human activities into the Amazon basin, the

competing influence of the moisture gradient (Le Page et al.,

2010b), and fires associated with pastures and grasslands in

northern Venezuela and southern Columbia. In Africa and

Australia, HESFIRE generally captures high fire incidence in

grassland areas, although modeled spatial patterns in Africa

are more uniform than observations (probably due to the sim-

ple representation of fuel, see Sect. 4.1.2). HESFIRE also

reproduces areas of moderate fire incidence in Southeast

Asia, Kazakhstan and southwestern Europe, and identifies

strong fire gradients with decreasing fuel load across semi-

arid and arid regions (e.g., in Africa, central Australia), al-

though with some limitation especially at the northern edge

of sub-Saharan Africa where fire incidence is overestimated.

Conversely, HESFIRE performs poorly in several regions, in-

cluding the pan-boreal region, at least partly due to a bias in

the climate and soil moisture data (see discussion), as well as

Central America, Mexico, the horn of Africa, and some ar-

eas of the Middle East where fire incidence is overestimated.

It also underestimates fire incidence in Indonesia, where soil

moisture remains beyond the fire prone threshold almost all

year long. Fires preferentially occur on areas with degraded

forests and drained peatlands in Indonesia (Page et al., 2002;

van der Werf et al., 2008), where moisture dynamics is not

captured with a 2.5◦ resolution data set.

Aggregated monthly burned area across 14 regions (Fig. 7)

and their respective fire size distribution are illustrated in

Fig. 8. The monthly time series provide insights into the per-

formance of HESFIRE on regional fire incidence, fire sea-

sonality, and interannual variability. Average burned area in

the main fire incidence regions are in agreement with the

GFED database (NHAF, SHAF, AUST, SHSA). Seasonality

also shows good agreement, whether regionally or at 1◦ res-

olution (not shown). The main seasonality discrepancy oc-

curs in sub-Saharan Africa, where the model substantially
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Figure 6. Observed and modeled average annual burned fraction. Top: GFEDv3 burned areas on “natural” landscapes. Bottom: fire model.

Figure 7. Regions used to aggregate observation- and model-

derived fire activity data in Fig. 8.

delays the onset and peak of the fire season. Finally, HES-

FIRE performs unevenly regarding interannual variability,

with medium to high correlation to observations in some

tropical and temperate regions, but low or even negative cor-

relation in boreal regions. It reproduces the El Niño induced

anomaly in Indonesia in 1997–1998, but because of the un-

derestimation of fire incidence mentioned before, the actual

extent of that extreme fire episode is not captured.

Next to each time series, the regional fire size distribu-

tion histograms for 2005 suggest the representation of sin-

gle fire size in HESFIRE is within the range of observations,

and that it depicts the decreasing fire frequency as a function

of fire size. It tends to overestimate the frequency of large

fires and their contribution to the total burned area, however.

Fire duration could not be readily evaluated with the MODIS

data, but a map of maximum fire duration is provided in the

Supplement to illustrate this capability (Fig. S5). 68 % of the

2005 global burned area occurred in fires longer than 1 day

in HESFIRE.

3.3 Model sensitivity

The sensitivity analysis shows the class of the parameter

whose altered values (+50 and −50 %) led to the largest

change in averaged annual burned area at the grid cell level

(Fig. 9). In boreal regions, although HESFIRE does not per-

form well, fire incidence is mostly sensitive to weather pa-

rameters, and to a lower extent to the fuel load parame-

ter. In humid tropical ecosystems, HESFIRE is also mostly

sensitive to weather parameters, but anthropogenic parame-

ters become dominant in areas with a substantial dry season

and agricultural activities, especially in South America along

the arc of deforestation. In semi-arid areas, the vegetation

fuel parameter has the most influence, including in Mexico,

sub-Saharan and southern sub-equatorial Africa, the horn of

Africa, Australia, and Kazakhstan, with consequences for

the model performance in these various regions (see discus-

sion). Finally, HESFIRE is primarily sensitive to the land-

scape fragmentation parameter in several regions due to two

mechanisms. In regions of high land use density (e.g., India),

fire spread is constantly limited by the fragmentation parame-

ter and fire incidence is low, but can increase (or diminish fur-

ther) when altering its value. In regions of low land use den-

sity but high fire incidence due to a very seasonal climatology

(e.g., sub-Saharan and northern sub-equatorial Africa), land-

scape fragmentation due to previous fires becomes a limiting

factor for late-season fires. Finally, regions of relatively high

land use density and fire incidence are probably sensitive to
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Figure 8. Comparison of HESFIRE with observation-derived data

over the 14 regions of Fig. 7. Left plots: time series of normalized

monthly burned area, with quantification of average annual burned

area in GFED and in HESFIRE, and their interannual Spearman’s

correlation. Right side: 2005 distribution of fires by size class and

cumulative burned area along these classes. Observation data are

from the MODIS MCD45 product. An asterisk (*) indicates signif-

icance of the Spearman’s correlation between the GFED and HES-

FIRE annual time series (p < 0.05, Spearman, 1904).

both mechanisms. Note that landscape fragmentation is in

part due to human activities, adding to the sensitivity of the

model to anthropogenic factors.

4 Discussion

HESFIRE shows encouraging capabilities, especially given

the difficulty of achieving a good representation of global

fire patterns (Bowman et al., 2011; Spessa et al., 2013). It is

a first step towards the three objectives stated in the Introduc-

tion. First, the model avoids some assumptions that would be

fundamentally inconsistent with fire ecology (e.g., fire spread

limited to a single day). Second, it includes climatic, anthro-

pogenic, and vegetation drivers, and the input variables were

chosen so as to enable projections under altered conditions;

GDP and land use are reported in future projections from in-

tegrated assessment models (Van Vuuren et al., 2011). Third,

HESFIRE reproduces reasonably well many aspects of re-

gional fire activity, including fire incidence and variability in

South America and fire size, both of which were not part of

the optimization procedure, and regional sensitivities to the
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four parameter classes correspond to what would be expected

based on broad fire ecology concepts.

The comparison to results reported by other models

– mostly fire incidence – suggests HESFIRE generally

achieves strong performance with respect to spatial patterns:

Fig. 6 in this paper compared to Fig. 3c in Thonicke et

al. (2010, Spread and InTensity of FIRE model, SPITFIRE),

Fig. 2 in Prentice et al. (2011; Land surface Processes and
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Figure 9. Major drivers of average annual burned area sensitivity among the nine optimized parameters as grouped into four thematic classes

(weather, vegetation fuel, anthropogenic practices, landscape fragmentation). For each of the nine parameters, HESFIRE was run keeping the

original parameterization, but altering the value of the considered parameter by −50 and +50 %. The map shows the class of the parameter

for which the average burned area in the considered grid cell varied the most between the two runs with these alternative values.

exchanges model, LPX), Fig. 1 in Kloster et al. (2010; Com-

munity Land Model, CLM). HESFIRE also shows strong

performances with respect to the actual quantification of the

average burned area fraction, with a rather infrequent occur-

rence of large discrepancies which are susceptible to severely

biased impacts on vegetation and carbon dynamics. Note,

however, that these results are not fully comparable as they

are produced by fire modules embedded within dynamic veg-

etation models, with potential bias originating from other

parts of the model (e.g., land cover distribution, fuel load).

The fire model developed by Li et al. (2012) in the Com-

munity Land Model’s Dynamic Global Vegetation Model

(CLM-DGVM) and modified to better account for anthro-

pogenic ignitions has spatial patterns of averaged burned area

similar to HESFIRE (Fig. 9 in Li et al., 2013).

4.1 Fires in semi-arid regions and links to the fuel

proxy

The combination of these characteristics and performance

suggests that the modeling and optimization framework

realistically captures the primary fire-driving mechanisms

and the specific magnitude of their influence regionally. It

could thus bring relevant insights into future fire activity

under altered environmental conditions, including agricul-

tural expansion and extreme climate events (e.g., sustained

droughts). There are however a number of issues, as well as

key potential improvements which we discuss in the next sec-

tions.

4.2 Fire incidence in boreal regions

HESFIRE underestimates fire incidence in Boreal regions.

This issue has been reported before in another fire model

(Rupp et al., 2007), which projected almost no burned area

when driven by the NCEP data but performed better when

driven by other data sets. Serreze and Hurst (2000) found

that summer precipitation is largely overestimated in NCEP,

compromising the whole hydrological cycle including RH

and soil moisture. Alternative data sets may address this is-

sue, either by using them as direct input or for correcting the

bias in the NCEP data while maintaining its high temporal

resolution and extensive timespan.

HESFIRE might be further limited because it does not

represent specific aspects of boreal fire regimes. In partic-

ular, boreal needleleaf forests are highly flammable and have

a vertical structure favorable to the development of crown

fires, which spread faster and can overcome higher levels of

moisture and humidity (Ryan, 2002). Additionally, large bo-

real fires typically spread over weeks or months – which can

be captured by HESFIRE – but might also remain dormant

in a smoldering phase during fire-averse conditions and re-

activate later without any new ignitions (Sedano and Rander-

son, 2014).

Semi-arid ecosystems presented a particular challenge due

to the sensitivity of fuel characteristics to soil, precipitation,

and potential evapotranspiration conditions, which cannot be

fully captured by the cumulative precipitation proxy. In the

final parameterization, HESFIRE is in good agreement with

observations in Australia, southern hemispheric Africa, and

Kazakhstan, but overestimates fire incidence in Mexico, the

horn of Africa, and semi-desert areas at the border of the Sa-

hara (Fig. 8). Precipitation patterns in these xeric landscapes

vary widely. Some semi-desert regions have low amounts

of precipitation year-round (Kazakhstan), while others have

short rainy seasons (sub-Saharan Africa). The optimization

procedure favors one set of conditions, leading to unequal

performances across these regions.
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Clearly there are other potential factors contributing to this

issue. The integration of HESFIRE within a vegetation model

could provide dynamic and process-based estimates of fuel

load, fuel structure, and fuel moisture. In parallel, integrat-

ing observation-derived estimates of aboveground biomass

(Saatchi et al., 2011) as a fuel-proxy could improve perfor-

mances while maintaining the value of a stand-alone ver-

sion of HESFIRE. Finally, semi-arid regions generally fea-

ture strong precipitation gradients which influence the spatial

distribution of vegetation and fuel load, and are not captured

accurately by the raw input data (2.5◦) or through their inter-

polation to 1◦.

4.3 Representation of anthropogenic ignitions

Modeling the global diversity of fire practices remains a sig-

nificant challenge. HESFIRE performs well in regions with

a well-established anthropogenic footprint of fire regimes,

even though it is based on a simplistic representation of fire

practices and suppression effort by necessity of obtaining

a globally consistent initial approach. The timing and fre-

quency of anthropogenic ignitions are complex phenomena

to represent in global models. In sub-Saharan Africa for ex-

ample, local populations are known to burn numerous small

fires early in the dry season to fragment the landscape and

limit the occurrence of high-intensity late-season fires (Laris,

2002; Le Page et al., 2010a). These fire management prac-

tices are not accounted for in HESFIRE, leading to a delayed

fire-peak month (by 1–3 months), and to an overestimation

of the average fire size. Beyond this specific case, fire prac-

tices vary as a function of land use (e.g., agriculture, pas-

tures), of land use transitions (e.g., deforestation and post-

clearing activities, Morton et al., 2008), of land management

practices (fire prevention, fire suppression), and can also be

due to arson or leisure activities (e.g., campfire). For agri-

cultural lands, fire practices are very specific (clearing, pre-

sowing, pre- and post-harvest burns) and last for as little as

a week to several months (Le Page et al., 2010a). Finally,

these practices vary at local to global scale according to en-

vironmental conditions, the availability of alternatives to fires

(e.g., fertilizer, pest control), national regulations, fire fight-

ing capabilities, etc. There is not much ground to believe fire

practices will closely follow future GDP and land use trends,

but these factors are part of the equation. Research towards a

better representation of broad classes of fire practices is on-

going (Li et al., 2013), and, as mentioned in other studies,

fire driver analysis over longer periods (e.g., with historical

reconstruction, Mouillot and Field, 2005) would provide fur-

ther guidance.

4.4 Representation of fire spread

The evaluation suggests the modeled average fire size is

within the observed range, but HESFIRE tends to overesti-

mate the contribution of large fires, which could be linked

to the representation of fire spread as an idealized elliptical

shape, similar to other global fire models. Burned areas are

typically patchy and the front line rarely remains unbroken

around the perimeter of the fire, especially in fragmented and

uneven landscapes. Better accounting for these aspects could

improve models performances, for example with the imple-

mentation of a fragmentation feedback on the fraction of the

idealized elliptical shape that actually burns.

Additionally, anthropogenic fire practices mentioned in

Sect. 4.3 can have a substantial footprint on fire size, includ-

ing in regions where it is overestimated by HESFIRE. In sub-

Saharan Africa for example, a better representation of small

early dry-season burns as a fire management practice would

lead to a more realistic accounting of fire sizes and of the

landscape fragmentation feedback on late-season fire spread.

5 Conclusions

This analysis highlights the strengths of the HESFIRE model

as well as its limitations and opportunities to address them.

The representation of multi-day fires opens the perspective

to explore regional sensitivities of fire duration to climate

change (e.g., longer droughts). The calibration of the anthro-

pogenic ignition function – suggesting a very rapid saturation

of ignitions with land use density – can be applied to gridded

land use scenarios to explore potential implications of ter-

restrial policies for fire activity. Ultimately, however, explor-

ing interactions between fires, the terrestrial biosphere, and

the atmosphere relies on frameworks of the coupled human–

Earth system. The data-assimilation methods applied here to

infer fire-driving parameters may provide additional guid-

ance for the parameterization of such complex models. The

integration of HESFIRE into a dynamic global vegetation

model (DGVM) could also provide insights into the con-

tribution of fire-driving assumptions, observation data, and

DGVM-derived vegetation/fuel characteristics to model per-

formances.

The Supplement related to this article is available online

at doi:10.5194/bg-12-887-2015-supplement.
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